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Abstract--The propagation of long waves of finite amplitude at the interface of two viscous fluids has 
been studied theoretically. For plane Couette-Poiseuille flow of two superposed layers of fluids of 
different viscosity, an equation is derived to determine the development in time of the shape of these 
finite amplitude waves. The influence of the viscosity ratio, the density difference of the fluids and an 
imposed pressure gradient have been investigated. 

1. I N T R O D U C T I O N  

A theoretical model for oil-water core-annular flow through a horizontal pipe was developed 
by Ooms et al. (1984). According to this model, the movement of the wavy oil core with 
respect to the pipe wall induces pressure variations in the water film, which can exert a force 
on the core in the vertical direction. This force can be so great that it counterbalances the 
buoyancy force on the core owing to a density difference between oil and water, allowing a 
steady core-annular flow to arise. The waves on the interface are essential: If the ampliiudes 
of the waves become zero, there will no longer be a force on the core to counteract the 
buoyancy force. In such a case, the core will rise or fall in the pipe, until it touches the pipe 
wall. The magnitude of the force also depends to a large extent on the shape of the waves: 
When the waves are symmetrical, again, no counteracting force will be present. For an 
application of the model, knowledge is required about the amplitude and shape of the 
interracial waves. In the original model, the oil viscosity was assumed to be so high that any 
flow in the core, and hence any variation in the oil-water interface form with time, could 
be neglected. So the core was assumed to be solid and the interface to be a solid-liquid 
interface. The simplification to a solid core permitted a free choice of the shape and 
amplitude of the waves; these were chosen in accordance with observations on oil-water 
core-annular flow experiments. 

In reality, the oil core has a finite viscosity, and the amplitude and shape are determined 
by the gravity force, the pressure drop over the pipe and the surface tension. The amplitude 
and shape cannot be chosen freely. However, the calculation of the finite amplitude waves 
for a core-annular flow with an eccentric core through a horizontal pipe is very complicated. 
Therefore, as a first approximation to the real flow problem, we have calculated the finite 
amplitude waves for a plane Couette-Poiseuille flow of two superposed layers of fluids of 
different viscosity between two horizontal plates. As the thickness of the water film is usually 
very small in comparison with the wavelength and the pipe radius, we believe that this 
approximation can be rather realistic. 

Yih (1967) showed that plane Couette-Poiseuille flow of two superposed layers of fluids 
of different viscosity between two horizontal plates can be unstable to a long-wavelength 
perturbation, however small the Reynolds number is. The cause of instability was found to be 
the difference in viscosity. Similar results were found by Li (1969) for a three-layer viscous 
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stratified flow between two horizontal plates and by Hickox ( 1971 ) for the flow of two fluids 
flowing concentrically in a straight circular tube. Hooper & Boyd (1983) studied the 

stability of a cocurrent flow of two fluids of different viscosity in an unbounded region; they 
found that the interface may be unstable to a small-wavelength perturbation. 

Yih wondered what will happen with the flow when it is unstable and disturbed slightly. 
According to him, one certainly cannot expect turbulence to be the final result when the 
Reynolds number is small. Yih supposed that owing to the growth of the disturbances, long 
waves of finite amplitude occur at the interface. The purpose of this paper is to investigate if 
such waves are possible and, if so, to calculate their shapes. 

Yih assumes in his paper that the amplitude of the disturbance is very small compared to 
the distance between the plates. The complete motion can then be resolved into the primary 
motion and a small perturbation motion. The perturbation motion is described by two 
Orr-Sommerfeld equations coupled by the interface conditions. Yih's solution procedure for 
the Orr-Sommerfeld equations and interface conditions is a perturbation calculation with 
the ratio of the distance between the plates and the disturbance wavelength as the small 
perturbation parameter. In first approximation, the perturbations are found to be neutrally 
stable; in second approximation, unstable modes of disturbance are found. 

In our calculation, the amplitude of the disturbance is not small compared to the distance 
between the plates, and so the Orr-Sommerfeld equations cannot be used. We will start with 
the Navier-Stokes equations. However, like Yih, we will simplify these equations by using a 
perturbation calculation with the ratio of the distance between the plates and the disturbance 
wavelength as the small perturbation parameter. Results for the first approximation are 
given. The influence of the viscosity ratio of the two fluids and the density difference between 
the fluids and of the imposed pressure gradient on the wave amplitude and shape is shown. 
To check the results, it will be assumed in some of the calculations that the disturbance 
amplitude is very small, as for very small amplitudes our results must be in agreement with 
Yih's first-approximation results. 

2. THEORY 

The flow problem 
Figure 1 gives a sketch of the flow problem. At the interface between fluid 1 and fluid 2, 

long waves of finite amplitude are supposed to be present. The waves are assumed to be two 
dimensional. As a reference system, a system is chosen according to which lower plate is at 
rest. The upper plate has a velocity uw in the x-direction with respect to the reference system. 

~ UPPER PLATE VE U,., jIrLUID 2y 

: '  I_ .O~R PLATE FLUID I 

Figure I. Sketch of the flow problem. 

The waves are supposed to be periodic; their wavelength is h. The velocity of the fluids at the 
interface is given by the components ui(x, t) and vi(x, t). The thickness of fluid layer 1 is 
given by ht(x, t) and that of fluid layer 2 by h~(x, t). Their sum is, of course, constant and 
equal to h. The fluids are supposed to be incompressible; so their densities p~ and p2 are 
constant. The viscosities are given by n, and r b. 

The flow of the two fluids can be calculated with the aid of the continuity equations 

0ul 0vl 
a-2 + [1] 
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0 U  2 OU 2 
a--~- + @ = O, [2] 

and the Navier-Stokes equations 

Ou, Out 
P"-a-i- + ptUl-~x 

OU l O~l  02Ul 02Ul 

+ pry, Oy Ox + Ot-O-~x:+ ~' Ok' 2'  [3] 

Ou t a u  I Ou t 0 ~ |  O2Ul 02ui 
p , - ~  + ptut-~-'-xx + ptvt Oy Oy + ~ ' -~x  2 + ~' Oy "----f" [41 

au2 Ou2 au~ a4~2 a2u2 O'u2 [5] 
P~ ~T + ,~u~ Tfx + P'~ Or a-~ + ~ ~ + ~ 0 7 '  

OU 2 OU 2 OU 2 0~2 a2v2 02U2 
P2-~ + p2u2-~x + p2v2 Oy ~ y  + ~:-~x 2 + 72 Oy2, [61 

supplemented with appropriate boundary conditions to be discussed later on. Ul and v~ are 
the velocity components of fluid 1; u2 and v2 those of fluid 2. t represents the time; the x- and 
y-coordinates are chosen as shown in figure 1. The pressure variables 4h and 4~2 are given by 

~t = Pt + PtgY, [7] 

~2 = P2 + P2gY, [8] 

in which p] and P2 are the pressures in the fluids and g is the acceleration due to gravity. 

Approximate flow equations 
Next, the order of magnitude of the terms in [1]-[6] is determined. As a length scale in 

the x-direction, X is used, and as a length scale in the y-direction h. As velocity scale in the 
x-direction, uw is used and in the y-direction v. The order of magnitude of the terms in [1] 
is 

This yields 

Out art 
- -  + - - = 0 .  
ax ay 

I I 
I I 
I I 

/ 
[9] 

The time scales in the x-direction (X/u,,) and in the y-direction (h/v) are of the same order 
of magnitude. With the aid of [10], the order of magnitude of the inertial and viscous terms 
of [3] and [4] can be written as 

aUl au, Out 0@, 02Ul 02ut 
Pt ~ "]- P tUt  "~X "~- PtUI ~ - y  192 "]- ~t  ~ "]- ~t 0 y 2  

I I I 
I I I I I 

/ 
[11] 
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Ov] &,~ &', 04)1 O2vl Ozv~ 
P'~T + P ' " ' G  + P ' ~ ' ~ = - ~ + " ~ x  ~ + "'Oy ---~ 

[121 

This study is restricted to waves with a wavelength large compared to the distance between 
the plates, so 

h 
- ~ 1. [ 1 3 ]  

Following Yih, in first approximation, all terms that are a factor h /h  smaller than other 
terms in the differential equations are ignored. This means that the inertial and viscous terms 
of [ 12] are ignored, as these terms are a factor h/X smaller than the corresponding terms in 
[11]. As the term 

02Ul 

is a factor of (h/h) z smaller than the term 

02ul 
TII 0);2 ' 

it can of course also be omitted. The ratio of the inertial terms in [ I 1 ] and the viscous term 

02Ul 
TIl Oy2 

of that equation is 

It is supposed that the value of the Reynolds number plu,,h/n~ is such that 

ptuwh h 
• - << 1.  [ 1 4 ]  

This means that, as in Yih's first approximation, also the inertial terms of [11] can be 
ignored. In this way [11] and [12] simplify to 

O4~l O2u~ 
0 = - O'--'x + •' cgy "- -T '  [15] 

0~l 
0 = - - -  [16] 

oy 

Equation [16] shows that ~ is a function o f x  and t only. Integration of [15] then gives 

1 a~bl y2 
u , = ~  Ox + c,y + c2, [171 
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in which c, and c2 are integration constants. With the aid of the boundary conditions 

fory = 0 : Ul = 0 [18] 

fory = hi : ut = ui, [19] 

it is found that 

ui h~ 
Cl h 2~1 

c2 = O. 

Substitution of [20] and [21] in [17] gives 

O4h [20] 
Ox ' 

[21] 

1 ~ y [221 Ul 2r/t y ( y  - hi)  + ui--~l . 

From the continuity equation [ 1 ] follows 

ar t  

oy 

h, OVl d 
fo -b-p-y Y=['I]°~'= 

OUl [23] 
Ox 

Fh, OUl j 
o; = - do  -~x  oy.  [241 

or 

Substitution of [22] in [24] gives 

h~ a24h 
vi 12rh ax 2 + -  

or  

hl Ohl 04', 
4r h Ox Ox 

ui Ohl hi Ou~ 
+ [25] 

2 0 x  2 0 x  

0 [ 30~1/  ~ X  I 0U i 
cgx ~ hI "O-xx } = -6~lUi + 6rhhl -~x + 121hv~. 

p2u,,h h 
712 

If also 

it can be shown in the same way that 

0 (h3, 0~21 Ohz Ou, 
0-x ~ x ]  - 6~2(uw - u,.)"~x + 6r/,h, ~ x  - 12T/2v,. 

For u~ an expression similar to [22] for Ul can be derived, namely, 

,, ( , , )  1 & k 2 y , ( y , _  h~) + u, + u~ 1 - 
u2 2,7~ Ox ~ ~ ' 

[261 

[271 

[281 
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y'  = h - y. [29] 

Kinematic and dynamic boundary conditions 
At the interface between the two fluids, the kinematic boundary condition holds. This 

condition can be written as 

DF 
= 0, [30] 

Dt 

in which D/Dt represents the material derivative and F the equation of the interface 

F= y - h,(x, t) =0. [31] 

Substitution of [31] in [30] gives 

Oh, Ohl 
v, = u, ~ + 0--7 [32] 

The order of magnitude of the terms of [32] are given by 

Oh, Ohl 
~ , , = u , T;x + a--i- 

t 

i I 
4 I I 

o( 1o( 1. 
[33] 

From [10] it can be concluded that the terms are of the same order of magnitude. So the 
kinematic boundary condition cannot be simplified. It gives a relation, [32], between the 
shape hj of the interface and the velocity components ui and oi of the fluids at the interface. 

At the interface of the fluids also the dynamic boundary condition holds. This condition 
can be written as 

a2h, 
nk~2,ik --  nkffl,ik = "y ~ hi, fo ry  = hi, [34] 

in which n,- are the components of the unit normal to the interface, 3' the surface tension 
coefficient and auk and cr2.~ k the stress tensors for fluids 1 and 2, respectively, aLi k is given 
by 

f f l , i k  = I 

Ou, 
- p , + 2 " O r - ~ x  

,0' \ a x  + ay / 

lou, 
" ' I F  ÷ ox/ ', o . . . . .  [ .... 

I 

- p ,  + 2,0, Or--21 Jl 0 
O y l  

I 
'1 . . . .  

[35] 

0 0 i 
I - P ~  
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The order of magnitude of the terms in [35] will be determined. From [7], [I 1] and [15] 
follows 

[ntu,,X I 
p l = O ~  h2 ] .  [361 

The other terms can be estimated with the aid of [10]; it is then found that 

aui [,7,uwX h 2) 
2r/l ~ = O~ h2 • ~-~ , [37] 

,z ,  - ~ - y  = 0 • , [381 

Ovl /ThuwX h 3) 
rh~=O~.7 ' [39] 

OVl [,7,u:X h 2) 2r/i -~y = O • [40] 
h 2 V "  

For a2.;~, a similar estimate can be made. 
The ratio of the two components nl and n2 of the unit normal can be estimated as 

nl n'Z2 = o ( h )  " [41] 

Substitution of [35]-[41] in [34] gives in first approximation 

Ou, Ou21 O:h, for y h,, [421 
- ( P l  - p~)nl  + ~li "~y - ~12 3y ] n2 = "Y OX ---'T hi ,  = 

aUl auz~ a2h, 
7 h - - ~ y - r l 2 - ~ y } n l - ( p l - p 2 ) n 2 = ' Y ~ x 2 n  2 , fo ry  = hi. [43] 

These relations must be satisfied for any combination (nl, nz). That is possible only if 

c92hl 
- ( P l  - P2) = "Y Ox 2 , fory  = hi, [44] 

OUl Ou2 
rh -~-y - r/2 ~--y = 0, for y = hi. [45] 

The ratio of the surface tension term and pressure terms in [44] is respectively of the 
following order of magnitude: 

0 3' . 0 3' 

If it is assumed that 

3, h 3 

rhuw " ~-5 << 1, [46] 
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and the following dimensionless groups, 

C, = r/~, [54] 
rh 

(PI - -  P2) g h2 
C2 [55] 

Substitution in the set of equations gives 

~lUw 

a a,v, au, 
= - 6 u , - E E  + 6 n , - d E  + i2v,., [561 

a x k  z-ff~j = 6Cl(1 - u,) --~- + 6C, H2-ff-~ - 12C, V~, [57] 

OHI OH~ [58] 
v"= u"Tx + o--r' 

~, = '~2 + CzHt, [59] 

U, = (l /H, + C,/H2) " 2 OX 2 0X + ' [601 

H, +/-/2 = I .  [61] 

So far we have not considered the imposed pressure gradient. It is now assumed that the 
dimensionless pressure drop over one wavelength is equal to C3. So C3 is defined as 

(73 = ¢,(X, T) - cI,,(X + L, T), [62] 

in which L is the dimensionless wavelength 

X 
L = - .  [63] 

h 

With the definition of the dimensionless quantities given in [53], C3 can be written as 

h 
£73 - - -  [¢,(x, t) - 4h(x + X, t)]. [64] 

~lUw 

Single equation for the shape of  the wave at the interface 
The purpose of the coming calculation is to reduce the set of equations [56]-[61] to one 

equation. First, [56] is multiplied by CI and added to [57]. This yields after some 
computations 

o~(C'H~ -~Ocb~ + H3 " ~]c9#~21 = O~ (6C, Hz + 6CtU~). [65] 

Integration of [65] gives 

C H 3 0~1 a~2 t , - ~  + H] ~ = 6C, H2 + 6C~U~ + G, [66] 
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in which G is a function of Yand Tonly. Substitution of [59] in [66] yields 

O':b I OH, 
(C,H~ + H~) ~ - 6C, U, = C 2 H ~ - ~  + 6CtH,_ + G. [67] 

Next, [59] is substituted in [60]. It is then found that 

HIll 2 Oc~l C2H,H~ OH, CtH, - - + u , =  - - +  
2(H2 + C~H,) OX 2(H2 + C~H,) OX H2 + CiHt 

[68] 

Substitution of [58] in [56] gives after some computations 

[69] 
aT OX~12 OX 2 ]  

The flow problem is now reduced to solving [67]-[69] with the additional relation [61]. For 
the ease of writing, the following quantities are introduced: 

Hj H 2 
0/, = C,H~ + H ~ ,  0/2 = 2 ( H 2  + C , H , ) '  [70]  

fl, = - 6 C , ,  /32 = 1, [71]  

C2HIH~ 
7, = C2H~, 72 = 2(H2 + C,H,) '  [72] 

C, H~ 
6t = 6GH2, 62 [73] 

H2 + CIH~ 

Equations [67] and [68] can now be written as 

debt OHj 
0/~-ff-p~ + 3, U, = 7 1 - ~  + 6, + G [74] 

0 ¢ ,  OHi 
0 / 2 - ' ~  + /32Ui = ")/2 ~ At- 62" [ 7 5 ]  

The solution of [74] and [75] is 

a¢,  /327, - / 3 , 7 2  OH, /326, - /3 ,62  f12 
- -  + + G,  [76]  

O X  a,/32 - 0/2/3, O X  a,f l2  - 0 /~1 0/,/32 - a2fl,  

~XI"Y2 - -  0/2"Y1 dill O/162 - -  0/261 0/2 
U; = - -  + G. [77] 

0/,fl2 - 0 / ~ ,  a x  0l,/32 - 0 / ~ ,  0/,fl2 - o~2fl, 

Again, for ease of writing, the following quantities are introduced: 

fl271 -/3(Y2 0/,72 - 0/27, 
X, 0/,fl2 - a 2 f l , '  X2 0/,/32 - 0/2fl,' [78] 

/3261 - -  /3162 O/162 - -  O/261 
[79] 

btl 0/I/32 - -  0/2/31 , 11"2 Otl/32 __ 0 /2 /31 ,  
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,•2 - -  0~2" 
[801 

601 CI~I#2 - -  0 / 3 1 '  032 0~132 - -  0~23 ] ' 

equations [76] and [77] can now be written as 

Ocb t OH I 
OX = XI - f f~ + p, + w~G, [81] 

OHI 
Ui : X2-~- + #2 + w2G. [821 

Substitution of [81] and [82] in [69] yields after some computations 

aT = - ~  - X2 ~--] ~ + a -x "  a-x x, ~ - x2 [83] 

+ ~ " - T ~  - u2 + a .  ,o, T~- - 

Finally, G has to be determined. First of all, G is independent of Y, as all terms of [67] are 
independent of Y. So G is a function of T only. Integration of [81] over one wavelength gives 
after some calculations, and keeping in mind that 

~Xo x°÷L d X  : cbt(X o + L, T) - cb,(Xo, T)  : -C3,  
O3( 

[841 

the following expression for G: 

G +  X, ~ + . ,  dX 
G : - [851 

ZXo+L wldX 
xo 

After substitution of [85] in [83], we finally find 

( -) .: .) a . .  x .a .~ _ x n .~  a~n. an .  a.~ _ x : - T  + ~" - ~'~ T 
o r  : T S  2 T ]  T 2  ~ + -g-2 " x' -f-i -g-x -f-S 

(o. ) 
- G + f~°+~ x , - ~  + . ,  dX 

• ¢.,01"- ~ - -  602 , 

fXo x°+L w I d X  

[86] 

Only one unknown quantity (H~) is present in [86]. H~(X,  T )  gives the shape of the wave 
at the interface. Starting from an initial condition for HI, the development in time of the 
shape of this wave can be calculated with the aid of [86] as a function of the parameters CI, 
C~ and C3. We have simulated this development in time on a computer by using [86] in the 
form of a finite difference equation. Forward time and centered space differences have been 
used; when a rather steep slope developed in the shape of the wave, an upwind differencing 
method was applied. Special attention was paid to the value of the time step AT and the 
length step AX. For every simulation, the values of these steps were decreased until the 
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results of the simulation did not change anymore. For the simulation, we started with an 
initial wave that had the shape of a sine function, 

2 rX  
H~ °~ = H-~ + A ~°~ sin - - ,  [87] 

L 

in which H~ = h t/h gives the average dimensionless thickness of the layer of fluid 1, A(°) = 

a(m/h represents the dimensionless initial amplitude of the wave and L = X/h is the 
dimensionless wavelength. 

3. R E S U L T S  

To check the correctness of the theory and the computer program, it was first assumed 
that the viscosity of  fluid 1 was 10 6 t imes larger than the viscosity of  fluid 2, so C~ = 10 -6. For 
such a low value of  the viscosity ratio, it can be expected that the influence of  fluid 2 is 
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Figure  2. Development  of in ter rac ia l  wave with t ime  for ex t remely  low viscosity ratio. Ct = 10-6; 
Cz - 0; C3 - 0; H--~ = 0.8; A ¢°) = 0.1; L = 6; A T  = 0.12; APt" = 0.066. 
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negligible, and that the shape of the wave will not change in time. In figure 2, the result of the 

numerical simulation for this case is presented; the development of the interfacial wave is 

calculated from T = 0 up to T = 21. As can be seen, the simulation is in agreement with the 

expectation. In the figure, the values of the parameters CI, Cz, C~, H~, A (°), L, AT and AX 

are given. 
Next,  the viscosity ratio CI was increased. Already at a value of 10 -5, the wave started to 

develop and move as function of time. In figure 3, the result of the simulation for C, = 10 -4 is 

given. As can be seen, a sawtoothlike shape of the wave starts to develop, which does not 
change anymore after a certain time. This equilibrium wave continues to travel with a 

constant velocity in the x-direction. In figure 4, the results for Ct = 10 - '  are given; the same 

conclusion as for the case of CI = 10 -4 can be drawn. 
So far, the dimensionless initial amplitude of the wave has had the value of,4 (0) = 0.1. To 

investigate the wave development as a function of the value of the initial amplitude, we kept 

>- 1.0~ 
I 0.5 

0 

2 c 

I I I I l l l I I 
0 1 2 3 4 5 6 7 8 
T= 12 X 

T 

2 f 

l 

0.5 

0 

I 
0 

T= 15 

I I I I I l l I 
1 2 3 4 5 6 7 8 

X 

1"0 E 
l 0.5 

0 

2 3 

I 
0 

T= 18 

I I I I I I I I 
1 2 3 q 5 6 7 8 

r 

>... 

T 
2 h 

1.oEl 0.5 

o 

I I 0 t 
T=21 

I 1 I I I I I 
2 3 4 5 6 7 8 

Figure 2. Continued. 

X 



494  G, OOMS et al. 

>_ 1 . 0 ~  

l 0 . 5  

0 

3 a 

l 
0 

T = 0  

I I I I I I 
3 q 5 6 7 8 

X 

> -  

3 u 

1 .0  

O.S 

0 El: 
I 
0 

T =  3 

I I I I I 
3 q 5 6 7 

/ 

8 

X 

T 
~c 

l 

0 . 5  

0 

I 
0 

T = 6  

I I I I I I I 
1 2 3 q 5 6 7 

I 
8 

X 

>- 

3 d 

"°E I- 0 . 5  

0 

I I I 1 I I I I 
0 I 2 3 q 5 6 7 

T =  9 - - - - - - ~  X 

Figure 3. Development of interracial wave with time for viscosity ratio of 10 -4. C, - 10-4; Cz - 0; 
C3 - O; H"t - 0.8; A (°) - 0.1; L - 6; AT - 0.12; AX - 0.066. 

P 
I 

8 



PROPAGATION OF LONG WAVES OF FINITE AMPLITUDE 495 

p-  

T 
3 c 

,.o~ 
0 .5  

0 

k 
0 
T= 12 

I : 1 I ,  I I I I 
I 2 3 IA 5 6 7 8 

X 

>-  

T 
3 £ 

"°E 
0 .5  

0 I- 
I 
0 

T= 15 

I I I I, I 
1 2 3 u, 5 

I ... 

6 

,,I 

°E I T 0 .5  

0 

I I 
0 1 

3 ~ T = 18 

I I I 1 
2 3 Lt 5 

I 
6 

1 
I d 
7 8 

• ~ X 

:I.- 

T °E i 0.5  

0 

3 h 

I I 
0 1 

T = 2 1  

I I ...I I I . .  I I 
2 3 q 5 6 7 8 

Figure 3. Continued. 

X 



496 G, OOMS et al. 

>.... 

T 

L a 

1 . 0  

0 . 5  

0 L 
I 
0 

T = O  

I I I I I I I I 
1 2 3 ~ 5 6 7 8 

X 

>- 1"0 E 
l 0.5 

0 

4 b 

I I I I I I I I I 
0 ! 2 3 Y 5 6 7 8 

T = 3  X 

)-. 

T 0.5 

0 

I I I I I I I I I 
0 1 2 3 ~ 5 6 7 8 

4 c T = 6 .~ X 

> -  

1° E 0 . 5  

0 

I I I I I I I I 
0 1 2 3 tl 5 6 7 

Figure  4. Development  of in ter rac ia l  wave wi th  t ime  for viscosity ra t io  of I 0 -  t. Ct - 0.1; C2 - 0; C~ - 
0; H-'~ - 0.8; A (°) - 0.1; L - 6; A T  - 0.06; A X  - 0.033. 



PROPAGATION OF LONG WAYF..S OF FINITE AMPLITUDE 497 

) -  

T 
1.0  

0 .5  

0 E 
I+ e 

I I I I I I I I I 
0 1 E 3 ~ 5 6 7 8 

T =  12 
X 

) . -  

T 
L f 

1 .0 

0 .5  

0 El 
I 
0 

T= 15 

I I I I I I I I 
1 2 3 q 5 6 7 8 

)- 1.0 

0.5  

0 E 
~g 

I 
0 

T= 18 

I I I I I I I 
2 3 Y 5 6 7 8 

X 

) -  1.0  

0 .5  

0 E 
I I I I I I I I I 
0 I 2 :3 Y S 6 7 8 

T=21 

Figure 4. Continued. 



498 G. OOMS et al. 

the viscosity ratio at the value of C, = 10-4 and varied A (01 from 0.02 up to 0.15. It was found 

that  for very small values of  A i0) (for instance, A (01 = 0.02 or 0.04), the shape of the wave did 

not change at all. The wave propagated at constant  velocity in the x-direction without 

disturbance. The velocity was equal to the velocity as found by Yih in first approximation. So 

for very small wave amplitudes,  our simulation is in agreement  with Yih's  results. This is 

another indication for the correctness of  our theory and computer  program. For larger values 

of  A (01 (for instance, A(°) = 0.07), the wave started to develop the sawtoothlike shape as 

already shown in figure 3; however the ampli tude of  the wave remained nearly constant in 

time. This can also be seen in figure 5, where the max imum value HI max) of Ht is given as 

function of T. For still larger values of  A (01, it was found that  HI max) decreased with time to a 

certain equilibrium value that  depends on A to) (see also figure 5). When the wave top comes 

too close to the upper plate, it is pushed back by pressure and viscous forces. 

Next,  the influence of  a difference in density between the two fluids on the wave 

development was studied. For pt > p2, a damping of  the wave may be expected. To that 

purpose, the value of  C2 was gradual ly increased from 0 to 0.5, keeping all other parameters 

constant.  For very small values of (72 (for instance, C2 = 0.01), there was no influence of the 

density difference on the wave development and wave velocity. However, for larger values of 

C2 (for instance, (72 = 1 ), a quick damping of  the wave ampli tude was observed. An example 

is given in figure 6 for C2 = 0.5, where the wave has almost completely disappeared at T = 

21. 

Finally, the influence of  an imposed pressure gradient  was investigated. Keeping all 

other parameters  constant,  (73 was decreased from about  0.1 to about  - 0 . 1 .  For a positive 

value of C3 (pressure decreases in x-direction),  the movement  of  the wave was not observed 

to be essentially different from the case in which C3 = 0. Only the equilibrium wave 

ampli tude and velocity changed.  For a negative value of  C3 (pressure increases in 

x-direction),  a strange phenomenon was observed. For instance, for C3 = - 0 . 1 ,  again a 

sawtoothlike shape developed; however, this time the sawtoothlike shape was in the opposite 

direction as for the case of  C3 = 0 and the wave started to move in the -x -d i rec t ion .  In figure 
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7, the simulation for C3 = -0.1 is shown. Obviously, for such values of C3, the imposed 
pressure gradient has a stronger influence on the development and movement of the wave 
than the shear due to the movement of the upper plate. 

4. C O N C L U S I O N  

We have shown that long waves of finite amplitude are possible at the interface of a plane 
Couette-Poiseuille flow of two superposod layers of fluids between horizontal plates. For the 
finite amplitude waves, the existence of which was already suggested by Yih in 1967, an 
equation has been derived for the development in time of their shape. In deriving this 
equation from the Navier-Stokes equations, we have assumed that the ratio of plate distance 
and wavelength and the product of the Reynolds numbers for the two layers and this ratio are 
small. Moreover, to simplify the dynamic boundary conditions, we have assumed that 
surface tension terms are small compared to viscous terms. 

An imposed symmetric wave disturbance develops in time into a stable asymmetric finite 
amplitude wave, provided the initial amplitude exceeds a certain value. The equilibrium 
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shape of the wave is a funciton of the viscosity ratio of the fluids, the density difference 
between the fluids and the applied pressure gradient. For very small wave amplitudes, the 
shape of the wave does not change with time and its velocity agrees with that found by Yih in 
his first approximation. 

The shape and amplitude of the calculated waves are in qualitative agreement with 
observations on oil-water core-annular flow experiments as reported by Ooms et al. (1984). 
However, accurate measurements are needed to be able to verify the reliability of our 
calculations in detail. At the moment, such experiments are being carried out. 

The development of a sawtoothlike interface in some of the calculated cases suggests 
regions of high interfacial curvature. By neglecting the surface tension terms, the effect of 
capillary pressure gradients in these regions is not considered. In our future work, we hope to 
incorporate this effect in our calculations. 
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